Gene Editing

Numerous studies show that single-stranded DNA (ssDNA) offers several advantages in gene editing technologies. These include lower cell toxicity, fewer off-target interactions, higher knock-in efficiency, and better integration into the target genome. The remarkable specificity of ssDNA offers significant benefits when used as a donor template in homology-directed repair mechanisms. gxstrands excels in producing large quantities of long ssDNA (up to 10,000 nt), essential for precise and effective gene editing applications in numerous fields:

  • 1. Yoshimi, K., Kunihiro, Y., Kaneko, T., Nagahora, H., Voigt, B., & Mashimo, T. (2016). ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nature Communications, 7, 10431.
  • 2. Li, H., Beckman, K. A., Pessino, V., et al. (2019). Design and specificity of long ssDNA donors for CRISPR-based knock-in. bioRxiv, 178905.
  • 4. Mason, D. M., Weber, C. R., Parola, C., et al. (2018). High-throughput antibody engineering in mammalian cells by CRISPR/Cas9-mediated homology-directed mutagenesis. Nucleic Acids Research, 46(14), 7436-7449.
  • 5. Quadros, R. M., Miura, H., Harms, D. W., et al. (2017). Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biology, 18, 92.
  • 6. Miura, H., Quadros, R. M., Gurumurthy, C. B., et al. (2018). Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nature Protocols, 13(1), 195-215.
  • 7. Roth, T. L., Puig-Saus, C., Yu, R., et al. (2018). Reprogramming human T cell function and specificity with non-viral genome targeting. Nature, 559, 405–409.